
433MHz RF Transmission and Reception system
Designed by RM

This project file details a microcontroller based data transmission system utilizing
rudimentary 433MHz transmission modules. The system consists of a transmitter and
receiver, both using ATTiny13 8-pin microcontrollers. The method used for transmission is a
Pulse-width based method, and the 4-bit data words that are transmitted are generated using
switches and displayed on LEDs.

It should be noted that this system could be adapted, with minor additions or
modifications, to perform more useful tasks such as turning on remote equipment.

Contents

1. Transmitter Schematic, PCB and Layout
2. Receiver Schematic, PCB and Layout
3. Assembly code
4. How it works
5. Misc and Photo of completed devices

Transmitter

The specified 433MHz antenna length is 17.2cm.

Note: PCB not to scale. When scaling for printing, width from border to border should
measure 3.8 Inches, and height from border to border should measure 2.5 Inches.

Receiver

Transmitter

Receiver

Note: PCB not to scale. When scaling for printing, width from border to border should
measure 3.2 Inches, and height from border to border should measure 2.5 Inches.

Assembly Code

 The programs for the receiver and transmitter were written using assembly language,
and programmed into the microcontrollers using AVR Studio 4.12 and PongProg2000 (with
ATTiny13 support). The programming hardware was a DIY parallel port programming
dongle.

Transmitter Code:
.include "tn13def.inc"
.def temp = r16
.def temp2 = r17
.def count = r18
.def temp3 = r19
.def temp4 = r20

reset:
ldi temp, 0b00010000
out DDRB, temp
ldi temp,low(RAMEND)
out SPL,temp
ldi temp, 0b00000101
out TCCR0B, temp

main:
in temp, PINB
ldi count, 5

sbi PORTB, 4 ;start pulse
rcall delay
rcall delay
rcall delay
cbi PORTB, 4
rcall delay
rcall delay
rcall delay

sendloop:
dec count
breq endtrans
sbrs temp, 3
rjmp send0
send1:
sbi PORTB, 4
rcall delay
rcall delay
cbi PORTB, 4
rcall delay
rcall delay
lsl temp
rjmp sendloop
send0:
sbi PORTB, 4
rcall delay
cbi PORTB, 4
rcall delay
lsl temp
rjmp sendloop

endtrans:
rjmp endtrans

delay:
ldi temp3, 221
ldi temp4, 16
delaya:
dec temp3
brne delaya
ldi temp3, 221
dec temp4

brne delaya
ret

Receiver Code:
.include "tn13def.inc"
.def temp = r16
.def temp2 = r17
.def count = r18
.def data = r19

.equ startbitlength = 30
.equ bit1length = 21
.equ bit0length = 11
.equ startcutoff = 36
.equ bit1cutoff = 27
.equ bit0cutoff = 15
.equ pulsecutoff = 5

;PB0-3 - LEDs (out)
;PB4 - Data (in)

reset:
ldi temp, 0b00001111
out DDRB, temp
ldi temp, RAMEND
out spl, temp
ldi temp, 0b00000101
out TCCR0B, temp

main:
out PORTB, data ;output data

sbis PINB, 4 ;wait for start bit
rjmp main

ldi temp, 0
out TCNT0, temp
parta:
sbic PINB, 4
rjmp parta

in temp, TCNT0
cpi temp, startcutoff ;test pulse size
brlo partb
rjmp main
partb:
cpi temp, bit1cutoff
brge partc
rjmp main

partc: ;decoding subroutine
ldi count, 4
clr data

partd:
sbis PINB, 4 ;wait for bit
rjmp partd

ldi temp, 0
out TCNT0, temp

parte:
sbic PINB, 4
rjmp parte

in temp, TCNT0
cpi temp, bit1cutoff
brlo partf
rjmp main

partf:

cpi temp, bit0cutoff
brlo partg
lsl data
sbr data, 1 ;put a 1 in data register
dec count
breq main ;all data received
rjmp partd ;or continue decoding

partg:
lsl data
cbr data, 1
dec count
breq main ;all data received
rjmp partd ;or continue decoding

How it works

Instructions

To operate the devices, you enter a 4-bit word using the switches on the transmitter,
and then press the reset button. Providing you are within range, the 4-bit word will appear on
the LEDs on the receiver.

The system works using a Pulse-width based method, which uses different sized pulses to
indicate ‘start’ ‘1’ and ‘0’. The start bit indicates a new transmission word is arriving. The
program cycles through each bit of the word, and creates the appropriate sized pulse for each
one. The receiver times the lengths of each pulse, and then places the appropriate bit in the
data register. The reason this method was used, was because the rudimentary RF modules
used require the amount of ‘on’ and ‘off’ time to be near the same to function correctly.

Miscellaneous

Programming

If you do not have a commercial AVR programmer, you can build your own very simple one,
using the details from the following website: http://www.tothemax.web1000.com – under
“PIC and AVR”. You will need to download PonyProg2000 and get the ATTiny13 support
executable.

Parts

The 433MHz RF Modules are available from Jaycar Electronics (http://www.jaycar.com.au),
and cost $AUS20 a pair.

Hex Files

Compiled Hex files for use with PonyProg are available at this address:
http://www.geocities.com/race_driver205/transreceiv.zip

Use of this document

If you want to use the information in this document in commercial designs, go for your life.
If you make millions and retire in a beach-front villa with a super-model wife and a Ferrari,
I’m cool with that.

Modifications

The most obvious modification is to change the “rjmp endtrans” instruction in the transmitter
program to “rjmp main”. The will mean you don’t have to press the pushbutton to send each
data word, and flicking the switches will change the receiver outputs instantly.

Other Uses

The transmission method could easily be modified to allow for transmission of 8-bit or
greater words. The key things to change would be the ‘count’ register initial value, and the
bit position that is read from.

Help

If you have any questions, please forward them to tothemax6@hotmail.com. I guarantee that
I built these devices myself and that they work correctly, so debugging questions are
regrettably unlikely to be answered.

The Finished Gear

